Search results for "Translation plane"
showing 6 items of 6 documents
Multiplicative loops of 2-dimensional topological quasifields
2015
We determine the algebraic structure of the multiplicative loops for locally compact $2$-dimensional topological connected quasifields. In particular, our attention turns to multiplicative loops which have either a normal subloop of positive dimension or which contain a $1$-dimensional compact subgroup. In the last section we determine explicitly the quasifields which coordinatize locally compact translation planes of dimension $4$ admitting an at least $7$-dimensional Lie group as collineation group.
A class of unitals of order q which can be embedded in two different planes of order q2
1987
By deriving the desarguesian plane of order q2 for every prime power q a unital of order q is constructed which can be embedded in both the Hall plane and the dual of the Hall plane of order q2 which are non-isomorphic projective planes. The representation of translation planes in the fourdimensional projective space of J. Andre and F. Buekenhouts construction of unitals in these planes are used. It is shown that the full automorphism groups of these unitals are just the collineation groups inherited from the classical unitals.
Semimodular Locally Projective Lattices of Rank 4 from v.Staudt’s Point of View
1981
We consider groups of projectivities in a certain kind of lattices called “Spaces”,also comprising the circle planes, and give theorems of v.Staudtian type, which characterize those Spaces which can be represented by a sublattice of a projective geometry of rank 4.
Kollineationen und Schliessungssätze für Ebene Faserungen
1979
Every affine central collineation of a translation plane π induces a special collineation of the projective space π spanned by the spreadF belonging to π. Here the relations between these special collineations of π and certain incidence propositions inF are investigated; so new proofs are given for some characterisations of (A,B)-regular spreads included in [7].
Multiplicative Loops of Quasifields Having Complex Numbers as Kernel
2017
We determine the multiplicative loops of locally compact connected 4-dimensional quasifields Q having the field of complex numbers as their kernel. In particular, we turn our attention to multiplicative loops which have either a normal subloop of dimension one or which contain a subgroup isomorphic to $$Spin_3({\mathbb {R}})$$ . Although the 4-dimensional semifields Q are known, their multiplicative loops have interesting Lie groups generated by left or right translations. We determine explicitly the quasifields Q which coordinatize locally compact translation planes of dimension 8 admitting an at least 16-dimensional Lie group as automorphism group.
Divisible designs from semifield planes
2002
AbstractWe give a general method to construct divisible designs from semifield planes and we use this technique to construct some divisible designs. In particular, we give the case of twisted field plane as an example.